Numerical Simulation and Experimental Study on Sealing Performance and Frictional Property of Rotary Lip Seal

Author:

Dong Huifang1,Hu Jian1ORCID

Affiliation:

1. School of Mechanical Engineering, Chaohu University, Chaohu, Anhui, China

Abstract

The hydrodynamic theoretical lubrication model of the friction pair between the rotary shaft and the lip seal under the state of full film lubrication was established in this paper. The Reynolds equation was solved by using the finite difference method, and the influence of the viscosity-temperature characteristics of the lubricant was taken into account in the solution process. The distribution of the film thickness and the hydrodynamic pressure in the sealing area was obtained. At the same time, the bench test was carried out and the correctness of the model was verified by comparing the simulation results and test results of reverse pumping rate and friction torque under different rotational speed of the shaft. The microasperity of the lip surface is a necessary condition for achieving the sealing effect. Therefore, the influences of the contact load of the seal and the root mean square deviation of the lip surface on the sealing performance and frictional property were analyzed by using the theoretical model. The analysis results show that the sealing performance and frictional property can be changed by changing the contact load and surface roughness of the lip, but a single increase in the influence of a certain factor cannot achieve good results, and comprehensive consideration is required in product design.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference27 articles.

1. Review of the lubrication, sealing, and pumping mechanisms in oil- and grease-lubricated radial lip seals

2. Sealing mechanism and main structural parameters of crankshaft rubber lip oil seal;D. Chan;Chinese Internal Combustion Engine Engineering,1984

3. Concepts of sealing mechanism of rubber lip type rotary shaft seals;H. K. Müller

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3