Investigating the Effect of Preimpact Energy Dissipation on Coefficient of Restitution regarding the Slope-Boulder Interaction

Author:

Bi Ran1ORCID,Li Shaoying1,Liu Gou1,Ren Jianxi1,Song Yongjun1

Affiliation:

1. Department of Civil and Architectural Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China

Abstract

Coefficient of restitution is regarded as a dominating parameter in rockfall research. Generally, small-scale experiments were developed without considering interactions between boulder and slope. However, preimpact moving statuses are essential to evaluate rockfall behaviors. To reveal the effect of preimpact interactions on coefficient of restitution, energy dissipation considering initial velocity, surface type, and slope angle is executed based on medium-scale tests. The results show that (1) as the inclination of initial velocity, higher rebound height, and the declining normal coefficient of restitution occur, a determinable linear function could demonstrate relationships among energy dissipation and all coefficient of restitution; when initial velocity exceeds 5 m/s, the recovery ability shows and produces an increasing trend with respect to the variation of kinematic coefficient of restitution and kinetic energy coefficient of restitution. (2) As the surface material varies, slope hardness and rebound ability influence normal coefficient of restitution, and the surface roughness and rotation feature dominate tangential coefficient of restitution; considering preimpact slope and boulder interactions, four types of coefficient of restitution follow declining trend with different material sequence. (3) Slope angle affects normal coefficient of restitution, and tangential coefficient of restitution relatively descends 18% and inclines 10% when the angle ranges from 30° to 75°; regarding preimpact moving status, it differs from bounce times. The correlation between preimpact energy dissipation and four coefficients of restitution can be represented by the same decreasing linear function, when increasing the slope angle.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3