Human Motion Representation and Motion Pattern Recognition Based on Complex Fuzzy Theory

Author:

Li Xiangkun1,Sun Guoqing2ORCID,Li Yifei3

Affiliation:

1. College of Physical Education, Yunnan University, Kunming 650500, Yunnan, China

2. Electronic Countermeasure Institute, National University of Defense Technology, Hefei 230037, Anhui, China

3. Shenzhen Yuanping Special Education School, Shenzhen 518116, Guangdong, China

Abstract

With the development of science and technology, the introduction of virtual reality technology has pushed the development of human-computer interaction technology to a new height. The combination of virtual reality and human-computer interaction technology has been applied more and more in military simulation, medical rehabilitation, game creation, and other fields. Action is the basis of human behavior. Among them, human behavior and action analysis is an important research direction. In human behavior and action, recognition research based on behavior and action has the characteristics of convenience, intuition, strong interaction, rich expression information, and so on. It has become the first choice of many researchers for human behavior analysis. However, human motion and motion pictures are complex objects with many ambiguous factors, which are difficult to express and process. Traditional motion recognition is usually based on two-dimensional color images, while two-dimensional RGB images are vulnerable to background disturbance, light, environment, and other factors that interfere with human target detection. In recent years, more and more researchers have begun to use fuzzy mathematics theory to identify human behaviors. The plantar pressure data under different motion modes were collected through experiments, and the current gait information was analyzed. The key gait events including toe-off and heel touch were identified by dynamic baseline monitoring. For the error monitoring of key gait events, the screen window is used to filter the repeated recognition events in a certain period of time, which greatly improves the recognition accuracy and provides important gait information for motion pattern recognition. The similarity matching is performed on each template, the correct rate of motion feature extraction is 90.2%, and the correct rate of motion pattern recognition is 96.3%, which verifies the feasibility and effectiveness of human motion recognition based on fuzzy theory. It is hoped to provide processing techniques and application examples for artificial intelligence recognition applications.

Funder

Yunnan Provincial Department of Education Science Research Fund Project

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference50 articles.

1. Fuzzy human motion analysis: A review

2. Video-based arm motion estimation and interaction with fuzzy predictive control

3. Human motion sensing and recognition: a fuzzy qualitative approach;H. Liu,2017

4. Missing human motion capture data recovery via fuzzy clustering and projected proximal point Algorithm;H. Gaofeng;Journal of Computer-Aided Design & Computer Graphics,2015

5. Hybrid evolutionary neuro-fuzzy approach based on mutual adaptation for human gesture recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3