Simulation of J-Solution Solving Process of Navier–Stokes Equation

Author:

Wang Wenjie1ORCID,Ayana Melkamu Teshome2ORCID

Affiliation:

1. School of Science, Chang’an University, Xi’an 710064, China

2. Department of Hydraulic and Water Resources Engineering, Arba Minch University, Arba Minch, Ethiopia

Abstract

To avoid grid degradation, the numerical analysis of the j-solution of the Navier–Stokes equation has been studied. The Navier–Stokes equations describe the motion of viscous fluid substances. On the basis of the advantages and disadvantages of the Navier–Stokes equations, the incompressible terms and the nonlinear terms are separated, and the original boundary conditions satisfying the j-solution of the Navier–Stokes equation are analyzed. Secondly, the development of a computational grid has been introduced; the turbulence model has also been described. The fluid form and the initial value of the j-solution of the Navier–Stokes equation are combined. The original boundary conditions are solved by a computer, and the nonlinear turbulence equations are derived, which control the fluid flow. The simulation of the fine grid is comprehended to analyze the research outcome. Simulation analysis is carried out to generate multiblock-structured grids with high quality. The j-solution on the grid points is the j-solution that can be used with a fewer number of meshes under the same conditions. The proposed work is easy to implement, and it consumes lesser memory. The results obtained are able to avoid mesh degradation skillfully, and the generated mesh exhibits the characteristics of smoothness, orthogonality, and controllability, which eventually improves the calculation accuracy.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference21 articles.

1. Study of actuator disc method based on improved turbulence model;H. L. Ren;Journal of Chinese Society of Power Engineering,2019

2. Effects of uncertainty in turbulence model coefficients on flow over airfoil simulation;H. Zhao;Acta Aeronautica ET Astronautica Sinica,2019

3. Impact of turbulence model in coupled simulation of ethylene cracking furnace;C. Z. Ni;CIESC Jorunal,2019

4. A Hybrid High-Order Method for the Steady Incompressible Navier–Stokes Problem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3