Analysis of the Creeping Phenomenon of Linear Feed System Based on the Rigid-Flexible Coupling Model

Author:

Liang Ruijun1ORCID,Hao Wenlong1,Ran Wenfeng1,Ye Wenhua1

Affiliation:

1. School of Mechanical and Electrical College, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

A mathematical model of the creeping phenomenon based on the mechanical model of the linear feed system was established. The dynamic characteristic parameters of each fixed joint were obtained by Yoshimura’s integral. Using the method, only the dynamic characteristic parameters of the joint surface per unit area with simple structure need to be studied, and then, the dynamic characteristic parameters of the whole joint surface can be obtained by integration. Based on the principle of the half-power bandwidth method and the frequency response function identification, the dynamic parameters of each moving joint were solved by the method of experimental modal analysis. Through the parameters of the fixed and moving joints, a rigid body model of the feed system and a flexible body model including the power transmission parts (ball screw pair) and the motion guide parts (guide slide pair and rolling bearing) were, respectively, established. And then, a rigid-flexible coupling dynamic model of the feed system was obtained through the constraint relationships between joints. The influence of both the external load and the feed rate on the fluctuation of motion speed of the system was analyzed from this model. The difference between the experimental results and the simulation results on a feed system platform is not greater than 10%, which verifies the creeping phenomenon. This conclusion can provide a basis for the optimization of the dynamic performance of the ball screw linear-feeding workbench.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3