Cornel Iridoid Glycoside Ameliorated Alzheimer’s Disease-Like Pathologies and Necroptosis through RIPK1/MLKL Pathway in Young and Aged SAMP8 Mice

Author:

Ma Denglei1ORCID,Li Yanzheng12,Zhu Yanqiu1,Wei Weipeng1,Zhang Li1,Li Yali1,Li Lin1ORCID,Zhang Lan1ORCID

Affiliation:

1. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China

2. Hebei Medical University, Shijiazhuang, Hebei 050017, China

Abstract

Background. Aging is an important risk factor for sporadic Alzheimer’s disease (AD) and other neurodegenerative diseases. Senescence-accelerated mouse-prone 8 (SAMP8) is used as an animal model for brain aging and sporadic AD research studies. The aim of the current study was to investigate the pharmacological effects of cornel iridoid glycoside (CIG), an active ingredient of Cornus officinalis, on AD-type pathological changes in young and aged SAMP8 mice. Methods. Locomotor activity test was used to detect the aging process of SAMP8 mice. Nissl staining and immunohistochemical staining were applied to detect neurons and myelin basic protein-labelled myelin sheath. Western blotting was used to detect the expression levels of related proteins of synapse, APP processing, and necroptosis. Results. The results showed that SAMP8 mice at the age of 6 and 14 months exhibited lower locomotor activity, age-related neuronal loss, demyelination, synaptic damage, and APP amyloidogenic processing. In addition, the increased levels of receptor-interacting protein kinase-1 (RIPK1), mixed lineage kinase domain-like protein (MLKL), and p-MLKL indicating necroptosis were found in the brain of SAMP8 mice. Intragastric administration of CIG for 2 months improved locomotor activity; alleviated neuronal loss and demyelination; increased the expression of synaptophysin, postsynaptic density protein 95, and AMPA receptor subunit 1; elevated the levels of soluble APPα fragment and disintegrin and metalloproteinase 10 (ADAM10); and decreased the levels of RIPK1, p-MLKL, and MLKL in the brain of young and aged SAMP8 mice. Conclusion. This study denoted that CIG might be a potential drug for aging-related neurodegenerative diseases such as AD.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3