Effects of Dissolved Organic Matter on Sorption of Oxytetracycline to Sediments

Author:

Wang Zongzhou12ORCID,Jiang Qianli3ORCID,Wang Runze12,Yuan Xiaoyu12ORCID,Yang Shengke12ORCID,Wang Wenke12ORCID,Zhao Yaqian4ORCID

Affiliation:

1. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang’an University, Ministry of Education, Xi’an, Shaanxi 710054, China

2. School of Environmental Science and Engineering, Chang’an University, Xi’an, Shaanxi 710054, China

3. Weinan Institute of Environmental Science, Weinan, Shaanxi 714000, China

4. Dooge Centre for Water Resource Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland

Abstract

The effects of two representative dissolved organic matters (DOMs) (derived from corrupt plants (PDOM) and chicken manure (MDOM)) on sorption characteristic of oxytetracycline to three typical sediments (first terrace (FT), river floodplain (RF), and riverbed (RB) sediments collected from the Weihe River) were investigated. Results showed that both DOMs can make the adsorption equilibrium time advance about 6 hours. The presence of DOMs changed the sorption kinetics model and the spontaneous degree of the reaction but did not change the sorption isotherm models. The adsorption of oxytetracycline (OTC) could be promoted by adding PDOM, and its maximum adsorption amount increased by 23.8% for FT, 38.0% for RB, and 28.3% for RF, respectively, whereas MDOM could inhibit the adsorption and maximum adsorption amount decreased by 23.3% for FT, 11.6% for RB, and 16.1% for RF, respectively. In addition, the DOM concentration also affected the adsorption. Overall, this study suggests that the humus-like DOM can promote the adsorption of OTC while the protein-like DOM can inhibit the adsorption of OTC to sediments, which is determined by the aromaticity, hydrophilicity, and polarity of the DOMs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3