Affiliation:
1. Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
2. Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
3. GE Healthcare Precision Health Institution, Shanghai, China
Abstract
Purpose. To develop and validate a clinical-radiomics nomogram based on clinical risk factors and CT radiomics feature to predict hypertensive intracerebral hemorrhage (HICH) prognosis. Methods. A total of 195 patients with HICH treated in our hospital from January 2018 to January 2022 were retrospectively enrolled and randomly divided into two cohorts for training (n = 138) and validation (n = 57) according to the ratio of 7 : 3. All CT radiomics features were extracted from intrahematomal, perihematomal, and combined intra- and perihematomal regions by using free open-source software called 3D slicer. The least absolute shrinkage and selection operator method was used to select the optimal radiomics features, and the radiomics score (Rad-score) was calculated. The relationship between Rad-score, clinical risk factors, and the HICH prognosis was analyzed by univariate and multivariate logistic regression analyses, and the clinical-radiomics nomogram was built. The area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the performance of the clinical-radiomics nomogram in predicting the prognosis of HICH. Results. A total of 1702 radiomics features were extracted from the CT images of each patient for analysis. By univariate and stepwise multivariate logistic regression analyses, age, sex, RBC, serum glucose, D-dimer level, hematoma volume, and midline shift were clinical risk factors for the prognosis of HICH. Rad-score and clinical risk factors developed the clinical-radiomics nomogram. The nomogram showed the highest predictive efficiency in the training cohort (AUC = 0.95, 95% confidence interval (CI), 0.92 to 0.98) and the validation cohort (AUC = 0.90, 95% CI, 0.82 to 0.98). The calibration curve indicated that the clinical-radiomics nomogram had good calibration. DCA showed that the nomogram had high applicability in clinical practice. Conclusions. The clinical-radiomics nomogram incorporated with the radiomics features and clinical risk factors has good potential in predicting the prognosis of HICH.
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献