A Nomogram Based on CT Radiomics and Clinical Risk Factors for Prediction of Prognosis of Hypertensive Intracerebral Hemorrhage

Author:

Fang Caiyun12,An Xiao2,Li Kejian12,Zhang Juntao3,Shang Hui12,Jiao Tianyu12,Zeng Qingshi1ORCID

Affiliation:

1. Department of Radiology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China

2. Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China

3. GE Healthcare Precision Health Institution, Shanghai, China

Abstract

Purpose. To develop and validate a clinical-radiomics nomogram based on clinical risk factors and CT radiomics feature to predict hypertensive intracerebral hemorrhage (HICH) prognosis. Methods. A total of 195 patients with HICH treated in our hospital from January 2018 to January 2022 were retrospectively enrolled and randomly divided into two cohorts for training (n = 138) and validation (n = 57) according to the ratio of 7 : 3. All CT radiomics features were extracted from intrahematomal, perihematomal, and combined intra- and perihematomal regions by using free open-source software called 3D slicer. The least absolute shrinkage and selection operator method was used to select the optimal radiomics features, and the radiomics score (Rad-score) was calculated. The relationship between Rad-score, clinical risk factors, and the HICH prognosis was analyzed by univariate and multivariate logistic regression analyses, and the clinical-radiomics nomogram was built. The area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the performance of the clinical-radiomics nomogram in predicting the prognosis of HICH. Results. A total of 1702 radiomics features were extracted from the CT images of each patient for analysis. By univariate and stepwise multivariate logistic regression analyses, age, sex, RBC, serum glucose, D-dimer level, hematoma volume, and midline shift were clinical risk factors for the prognosis of HICH. Rad-score and clinical risk factors developed the clinical-radiomics nomogram. The nomogram showed the highest predictive efficiency in the training cohort (AUC = 0.95, 95% confidence interval (CI), 0.92 to 0.98) and the validation cohort (AUC = 0.90, 95% CI, 0.82 to 0.98). The calibration curve indicated that the clinical-radiomics nomogram had good calibration. DCA showed that the nomogram had high applicability in clinical practice. Conclusions. The clinical-radiomics nomogram incorporated with the radiomics features and clinical risk factors has good potential in predicting the prognosis of HICH.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3