Computer-Assisted Quantitative Analysis of Skeletal Muscles of Snowboarding Parallel Giant Slalom Athletes after Exercise Based on Artificial Intelligence and Complex Networks

Author:

Yu Haiqiang12,Yang Fei2ORCID,Wang Jin1

Affiliation:

1. School of Physical Education, Liaoning Normal University, Dalian, 116029 Liaoning, China

2. Department of Physical Education and Research, Dalian Medical University, Dalian, 116044 Liaoning, China

Abstract

The snowboarding project has the characteristics of high risk and high technical level. The current publicity level is not high, and the number of participants is also very limited. Another potential advantage medal breakthrough project that is expected to be achieved in the Winter Olympics has received a lot of attention, creating favorable opportunities for the promotion and development of this project in China. The event requires good special physical support, skeletal muscle contraction is the body to produce motor function, and special physical training and recovery are key factors for athletes to obtain excellent results in the competition. This article is aimed at performing ultrasonic quantitative analysis on the skeletal muscles of skiers after exercise based on artificial intelligence and complex networks and at studying the skeletal muscle conditions of snowboarders after exercise, so as to provide a certain theoretical basis for coaches in future scientific training. Based on a large amount of literature, this paper uses variational optical flow calculation and split Bregman method to solve the typical HS model, L1-L2 model, and L1-high-order model, respectively, and uses the motion estimation method to describe the movement of muscles. An experiment was designed to collect ultrasound images of the gastrocnemius and quadriceps muscles during contraction. In addition, a motion target positioning algorithm was used to obtain some motion parameters, which provided direct help for athletes in rationally arranging training load and scientific training. The experimental results in this paper show that the muscle motion features extracted from the ultrasound sequence images can quantitatively express a lot of important information about the skeletal muscle motion form and function and have potential practical application value. And the different invariants of each type of ski trajectory vary greatly, floating between 1.5429 and 7.6759.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3