Intelligent Intrusion Detection Method of Industrial Internet of Things Based on CNN-BiLSTM

Author:

Li Aichuan1ORCID,Yi Shujuan2ORCID

Affiliation:

1. College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China

2. Engineering Research Center of Processing and Utilization of Grain By-products, Ministry of Education, Heilongjiang Engineering Technology Research Center for Rice Ecological Seedlings Device and Whole Process Mechanization, Daqing, Heilongjiang 163319, China

Abstract

Aiming at the problems of fuzzy detection characteristics, high false positive rate and low accuracy of traditional network intrusion detection technology, an improved intelligent intrusion detection method of industrial Internet of Things based on deep learning is proposed. Firstly, the data set is preprocessed and transformed into 122 dimensional intrusion data set after one-hot coding; Secondly, aiming at the problem that convolution network cannot deal with data with long-distance attributes, Bidirectional long short-term memory (BiLSTM) is used to mine the relationship between data features; At the same time, the Batch Normalization mechanism is introduced to speed up the training of deep neural network. After the activation function performs nonlinear transformation on the input data of the previous layer, it is normalized to ensure the trainability of the network. The experimental results on NSL-KDD data set show that the accuracy of the proposed CNN-BiLSTM model is 96.3%, the detection rate is 97.1%, and the performance is the best.

Funder

Central Government Directs Special Projects for the Development of Local Science and Technology

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3