Affiliation:
1. Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China
Abstract
Focusing on the on-line multiagent scheduling problem, this paper considers the time-dependent probability of success and processing duration and proposes an OL-DEC-MDP (opportunity loss-decentralized Markov Decision Processes) model to include opportunity loss into scheduling decision to improve overall performance. The success probability of job processing as well as the process duration is dependent on the time at which the processing is started. The probability of completing the assigned job by an agent would be higher when the process is started earlier, but the opportunity loss could also be high due to the longer engaging duration. As a result, OL-DEC-MDP model introduces a reward function considering the opportunity loss, which is estimated based on the prediction of the upcoming jobs by a sampling method on the job arrival. Heuristic strategies are introduced in computing the best starting time for an incoming job by each agent, and an incoming job will always be scheduled to the agent with the highest reward among all agents with their best starting policies. The simulation experiments show that the OL-DEC-MDP model will improve the overall scheduling performance compared with models not considering opportunity loss in heavy-loading environment.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献