A Novel Heterozygous De Novo MORC2 Missense Variant Causes an Early Onset and Severe Neurodevelopmental Disorder

Author:

Arbide Daniel1ORCID,Elkhateeb Nour2ORCID,Goljan Ewa3,Gonzalez Carolina Perez4,Maw Anna5,Park Soo-Mi2

Affiliation:

1. Edinburgh Medical School, University of Edinburgh, Edinburgh, UK

2. Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

3. Exeter Genomic Laboratory Hub, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK

4. Department of Paediatric Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

5. Department of Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

Abstract

Microrchidia CW-type zinc finger protein 2 (MORC2) is an ATPase-containing nuclear protein which regulates transcription through chromatin remodelling and epigenetic silencing. MORC2 may have a role in the development of neurones, and dominant variants in this gene have recently been linked with disorders including Charcot-Marie-Tooth type 2Z disease, spinal muscular atrophy and, more recently, a neurodevelopmental syndrome consisting of developmental delay, impaired growth, dysmorphic facies, and axonal neuropathy (DIGFAN), presenting with hypotonia, microcephaly, brain atrophy, intellectual disability, hearing loss, faltering growth, and craniofacial dysmorphism. Notably, variants in MORC2 have shown clinical features overlapping with those of Cockayne and Leigh syndromes. Here, we report a case of MORC2-related DIGFAN syndrome in a female infant caused by a novel heterozygous de novo variant. The condition was early onset and severe, further expanding the range of genotypes associated with this disorder. Clinical features included unilateral hearing loss, developmental delay and regression within the first year of life, microcephaly, severe feeding difficulties, and faltering growth, resulting in death at 13 months of age.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3