Preparation of Ampicillin Surface Molecularly Imprinted Polymers for Its Selective Recognition of Ampicillin in Eggs Samples

Author:

Tian Yang1,Wang Yue1,Wu Shanshan1,Sun Zhian1,Gong Bolin1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China

Abstract

Surface-imprinted polymers (MIPs) microspheres with the ability to specifically recognize water-soluble molecules were prepared using self-made monodisperse porous poly(chloromethylstyrene-co-divinylbenzene) beads as the solid-phase matrix and ampicillin (AMP) as the template molecule. MIPs were synthesized using different template molecule: monomer: crosslinker ratios and the optimum preparation ratio were obtained by measuring adsorption. The maximum equilibrium amount of adsorption by the MIPs reached 115.62 mg/g. Scatchard analysis indicated that the MIPs contained two types of recognition sites: specific and nonspecific. Based on the adsorption kinetics, adsorption equilibrium was reached after 30 minutes. Penicillin G, amoxicillin, and sulbactam acid were used as competitive molecules to research the selective adsorption capacity of the MIPs. The imprinted material was found to have good selectivity with selectivity coefficients for penicillin G, amoxicillin, and sulbactam acid of 5.74, 6.83, and 7.25, respectively. The MIPs were used as solid-phase extraction filler, resulting in successful enrichment and separation of ampicillin residue from egg samples. Standard addition recovery experiments revealed that recovery was good with recoveries from the spiked samples ranging from 91.5 to 94.9% and relative standard deviations from 3.6 to 4.2%. The solid-phase extraction MIPs microcolumn was reused 10 times, where it maintained a recovery rate of over 80%. This work presents a sensitive, fast, and convenient method for the determination of trace ampicillin in food samples.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3