Diagnosis of Brain Tumor Using Light Weight Deep Learning Model with Fine-Tuning Approach

Author:

Shelatkar Tejas1,Urvashi Dr.1,Shorfuzzaman Mohammad2ORCID,Alsufyani Abdulmajeed2ORCID,Lakshmanna Kuruva3ORCID

Affiliation:

1. Department of Computer Science and Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India

2. Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

3. School of Information Technology and Engineering, VIT-Vellore, India

Abstract

Brain cancer is a rare and deadly disease with a slim chance of survival. One of the most important tasks for neurologists and radiologists is to detect brain tumors early. Recent claims have been made that computer-aided diagnosis-based systems can diagnose brain tumors by employing magnetic resonance imaging (MRI) as a supporting technology. We propose transfer learning approaches for a deep learning model to detect malignant tumors, such as glioblastoma, using MRI scans in this study. This paper presents a deep learning-based approach for brain tumor identification and classification using the state-of-the-art object detection framework YOLO (You Only Look Once). The YOLOv5 is a novel object detection deep learning technique that requires limited computational architecture than its competing models. The study used the Brats 2021 dataset from the RSNA-MICCAI brain tumor radio genomic classification. The dataset has images annotated from RSNA-MICCAI brain tumor radio genomic competition dataset using the make sense an AI online tool for labeling dataset. The preprocessed data is then divided into testing and training for the model. The YOLOv5 model provides a precision of 88 percent. Finally, our model is tested across the whole dataset, and it is concluded that it is able to detect brain tumors successfully.

Funder

Taif University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3