Deep Intelligence-Driven Efficient Forecasting for the Agriculture Economy of Computational Social Systems

Author:

Li Xuelan1ORCID,Li Xiao2,Jiang Jiyu3ORCID

Affiliation:

1. School of Management, Anhui Science and Technology University, Bengbu, Anhui 233030, China

2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

3. School of Economics and Management, Anhui Agricultural University, Hefei, Anhui 230036, China

Abstract

In the vision of smart cities, everything is highly connected with the aid of computational intelligence. Therefore, the cyber-physical society has been named a computational social system for a long time. Due to the high relation with vast populations’ national livelihood, agriculture will still serve as a core industry in the national economy. As a result, this study focused on an efficient forecasting method for the agriculture economy. In recent years, the conception of deep intelligence has received overall prevalence in academia because of its excellent performance in implementing intelligent information processing tasks. Hence, this paper utilized deep intelligence driven by neural networks and managed to investigate an efficient prediction method for the agriculture economy of computational social systems. To fit the time-series forecasting scene of the long-term development of the agriculture economy, the convolutional neural network model is slightly improved by revising its parallel structure into the recurrent format. Finally, simulations on realistic datasets are carried out to evaluate the proposed forecasting method.

Funder

Anhui Provincial Quality Engineering Project

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3