Electrophysiological Correlates of the Threshold to Detection of Passive Motion: An Investigation in Professional Volleyball Athletes with and without Atrophy of the Infraspinatus Muscle

Author:

Salles José Inácio12,Cossich Victor Rodrigues Amaral1,Amaral Marcus Vinicius1,Monteiro Martim T.1,Cagy Maurício3,Motta Geraldo1,Velasques Bruna145,Piedade Roberto4,Ribeiro Pedro45

Affiliation:

1. Neuromuscular Research Laboratory, National Institute of Traumatology and Orthopaedics (INTO), Avenida Brasil 500, 20940-070 Rio de Janeiro, RJ, Brazil

2. Brazilian Volleyball Confederation, Shopping Città America Avenida das Américas 700, Bloco 7, Barra da Tijuca, 22640-100 Rio de Janeiro, RJ, Brazil

3. Biomedical Engineering Program, Centre of Technology, Federal University of Rio de Janeiro, Avenida Horácio Macedo 2030, Bloco H, Sala 327, Cidade Universitária, 21941-901 Rio de Janeiro, RJ, Brazil

4. Brain Mapping and Sensorimotor Integration Laboratory, Institute of Psychiatry, Federal University of Rio de Janeiro, Avenida Venceslau Brás 71, Botafogo, 22290-140 Rio de Janeiro, RJ, Brazil

5. Institute of Applied Neuroscience (IAN), Rua Pacheco Leão 704, 25 Jardim Botânico, 22460-030 Rio de Janeiro, RJ, Brazil

Abstract

The goal of the present study is to compare the electrophysiological correlates of the threshold to detection of passive motion (TTDPM) among three groups: healthy individuals (control group), professional volleyball athletes with atrophy of the infraspinatus muscle on the dominant side, and athletes with no shoulder pathologies. More specifically, the study aims at assessing the effects of infraspinatus muscle atrophy on the cortical representation of the TTDPM. A proprioception testing device (PTD) was used to measure the TTDPM. The device passively moved the shoulder and participants were instructed to respond as soon as movement was detected (TTDPM) by pressing a button switch. Response latency was established as the delay between the stimulus (movement) and the response (button press). Electroencephalographic (EEG) and electromyographic (EMG) activities were recorded simultaneously. An analysis of variance (ANOVA) and subsequent post hoc tests indicated a significant difference in latency between the group of athletes without the atrophy when compared both to the group of athletes with the atrophy and to the control group. Furthermore, distinct patterns of cortical activity were observed in the three experimental groups. The results suggest that systematically trained motor abilities, as well as the atrophy of the infraspinatus muscle, change the cortical representation of the different stages of proprioceptive information processing and, ultimately, the cortical representation of the TTDPM.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3