Effect of Precursor Concentration on Structural Optical and Electrical Properties of NiO Thin Films Prepared by Spray Pyrolysis

Author:

Barir Rafia12,Benhaoua Boubaker1ORCID,Benhamida Soufiane12,Rahal Achour1,Sahraoui Toufik3ORCID,Gheriani Rachid2

Affiliation:

1. Laboratory VTRS, Faculty of Exact Sciences, El Oued University, 39000 El Oued, Algeria

2. Faculty of Mathematics and Material Sciences, University of Ouargla, 30000 Ouargla, Algeria

3. Laboratoire de Microscopie Electronique & Sciences des Matériaux, USTO-MB, BP 1505 El MNaouer, Oran, Algeria

Abstract

Undoped nickel oxide (NiO) thin films were deposited on 500°C heated glass substrates using spray pyrolysis method at (0.015–0.1 M) range of precursor. The latter was obtained by decomposition of nickel nitrate hexahydrate in double distilled water. Effect of precursor concentration on structural, optical, and electrical properties of NiO thin films was investigated. X-ray diffraction (XRD) shows the formation of NiO under cubic structure with single diffraction peak along (111) plane at 2θ=37.24°. When precursor concentration reaches 0.1 M, an increment in NiO crystallite size over 37.04 nm was obtained indicating the product nano structure. SEM images reveal that beyond 0.04 M as precursor concentration the substrate becomes completely covered with NiO and thin films exhibit formation of nano agglomerations at the top of the sample surface. Ni-O bonds vibrations modes in the product of films were confirmed by FT-IR analysis. Transparency of the films ranged from 57 to 88% and band gap energy of the films decreases from 3.68 to 3.60 eV with increasing precursor concentration. Electrical properties of the elaborated NiO thin films were correlated to the precursor concentration.

Funder

VTRS laboratory of El Oued University

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3