A New Lane Departure Warning Algorithm Considering the Driver’s Behavior Characteristics

Author:

Xu Lun Hui1,Hu San Gen1,Luo Qiang2

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510640, China

2. School of Civil Engineering, Guangzhou University, Guangdong 510006, China

Abstract

In order to meet the driving safety warning required for different driver types and situations, a new lane departure warning (LDW) algorithm was proposed. Its adaptability is much better through setting the different thresholds of time to lane crossing (TLC) using fuzzy control method for driver with different driving behaviors in different lanes and different vehicle movements. To ensure the accuracy of computation of TLC under the different actual driving scenarios, the algorithm was established based on vehicle kinematics and advanced mathematics compared to other ways of computation of TLC. On this basis, a LDW strategy determining driver's intentions was presented by introducing identifying vehicle movements. Finally, a vast quantity of the real vehicle experiments was given to demonstrate the effectiveness of the proposed LDW algorithm. The results of the tests show that the algorithm can decrease false alarm rate effectively because of distinguishing from unconscious by real-time vehicle movements, and promote the adaptability to the driver behavior characteristics, so it has favorable driver acceptance and strong intelligence.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3