Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms

Author:

Alsheref Fahad Kamal1ORCID,Fattoh Ibrahim Eldesouky2ORCID,M.Ead Waleed1ORCID

Affiliation:

1. Information Systems Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt

2. Computer Science Department, Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt

Abstract

Competent employees are a rare commodity for great companies. The problem of maintaining good employees with experience threatens the owners of companies. The issue of employee attrition can cost employers a lot as it takes a lot to compensate for their expertise and efficiency. For this reason, in this research, we present an automated model that can predict employee attrition based on different predictive analytical techniques. These techniques have been applied with different pipeline architectures to select the best champion model. Also, an autotuning approach has been implemented to calculate the best combination of hyper parameters to build the champion model. Finally, we propose an ensemble model for selecting the most efficient model subject to different assessments measures. The results of the proposed model show that no model up until now could be considered ideal and perfect for each case of business context. Yet, our chosen model was pretty much optimal as per our requirements and adequately satisfied the intended goal.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3