Genetic Diversity of Merozoite Surface Protein-1 and -2 Genes in Plasmodium falciparum Isolates among Asymptomatic Population in Boset and Badewacho Districts, Southern Ethiopia

Author:

Chekol Tsegaye1,Alemayehu Gezahegn Solomon2ORCID,Tafesse Weynshet3,Legesse Gudeta4,Zerfu Biruk1ORCID,File Temesgen5ORCID,Wolde Mistire1,Golassa Lemu6ORCID

Affiliation:

1. Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia

2. Research and Community Service Center, College of Health Science Defense University, Bishoftu, Ethiopia

3. Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachamo University, Hossna, Ethiopia

4. Department of Medical Laboratory Science, College of Medicine and Health Sciences, Arsi University, Assela, Ethiopia

5. Department of Applied Biology, Adama Science and Technology University, Adama, Ethiopia

6. Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia

Abstract

Background. The genetic variation of Plasmodium falciparum has been studied to assess local malaria transmission genetic profile using evidence-based intervention measures. However, there are no known previous reports of P. falciparum polymorphism in Badewacho and Boset districts, Southern Ethiopia. The purpose of this study was to determine the genetic diversity of the merozoite surface protein-1 and -2 (msp-1 and msp-2) allelic families in P. falciparum isolates from an asymptomatic populations. Methods. This study was conducted from finger-prick blood samples spotted on 3 mm Whatman filter paper collected during a community-based cross-sectional study. Nested polymerase chain reaction amplification was used to type the allelic variants of msp-1 and msp-2. Results. From 669 asymptomatic study participants, a total of 50 samples positive for P. falciparum were included for molecular analysis. Of 50 positive samples, 43 P. falciparum isolates were successfully amplified for the msp-1 and msp-2 allelic families. A total of twelve different allele sizes (75–250 bp) were identified within the three allelic families of msp-1, whereas ten different allele sizes (250–500 bp) were detected within the two allelic families of msp-2. MAD20 had a higher allelic proportion, 65% among allelic families of msp-1, whereas the 3D7 allelic family 90.7% was higher in msp-2. A slightly higher frequency of polyclonal infection 53.5% was found in msp-2 allelic family, whereas a low proportion polyclonal infection 46.5% was found in msp-1 allelic family. The overall mean multiplicity of infection (MOI) for msp-1 and msp-2 was identical (MOI = 1.56). Correspondingly, the expected heterozygosity (He) value for msp-1 (He = 0.23) and msp-2 (He = 0.22) was almost similar. Conclusions. The findings of this study revealed low genetic diversity of the msp-1 and msp-2 allelic families in P. falciparum isolates. However, continued monitoring status of the local genetic diversity profile in the P. falciparum population is required to support current malaria control and elimination strategies.

Publisher

Hindawi Limited

Subject

Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3