A Space Domain Energetics Study for CO2Increasing Based on SRES-A2 Emission Scenario

Author:

Veiga José Augusto P.12,Ambrizzi Tercio2ORCID,Pezza Alexandre B.3

Affiliation:

1. Institute of Technology, Amazon State University, Avenida Darcy Vargas 1200, 69065-020 Manaus, Brazil

2. Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo, Brazil

3. School of Earth Sciences, The University of Melbourne, VIC, Australia

Abstract

This work presents a detailed investigation of the changes in the global pattern of energetics under a prescribed temporal evolution of CO2concentration as proposed by the A2 IPCC forcing scenario (SRES-A2) using a combination of reanalysis and climate models. A validation climatology is computed using the classic Lorenz energetic formulation, with generation and dissipation components estimated as residuals. The results show a good agreement overall between models and reanalysis for the present day climate, noting that the models generally give more zonal energy and less eddy energy when compared to the reanalysis. Spatial analysis translates the above results as models depicting greater energy associated with the subtropical jet streams than effectively observed. This pattern is observed regardless of season or hemisphere. The projections for future climate scenarios suggest a further increase in the zonal kinetic energy, with a slight average reduction in all other terms. This pattern is seen in association with a substantial decrease in the conversion term mainly associated with sensible heat transport (CA) under a warmer climate. In agreement with recent work in the literature, our results suggest an overall reduction of the global energetics under increasing CO2.

Funder

CNPq

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3