Seismic Response and Safety Assessment of an Existing Concrete Chimney under Wind Load

Author:

Cheng Xuansheng1ORCID,Qian Hongjie1,Wang Chao2,Fu Xuedong2

Affiliation:

1. Key Laboratory of Disaster Prevention and Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China

2. Western Engineering Research Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

A safety assessment of a chimney under the action of wind and earthquake is performed on one of the reinforced concrete chimneys in the Jinchuan company in China. The assessment is based on the linear filtering method, and wind loads of several heights on one field are simulated by MATLAB. The displacement of the structure under the action of wind load and earthquake is analyzed using maximum value superposition, and the stress on the chimney is calculated in four cases using the equal curvature criterion method. The time-history responses of the tall chimney structure under linear and nonlinear elastic conditions are discussed. The results show that for a chimney under wind load or frequent earthquakes, the displacement limit can meet the code requirements; however, under the combined action of frequent earthquakes and wind load, the structural displacement is bigger than other conditions. When the chimney is acted upon by a wind load, frequent earthquake action, or the combined action of wind load and frequent earthquake action, the maximum compressive stress, maximum tensile stress, and maximum shear stress are concentrated at the bottom of the chimney. The ultimate bearing capacity of a reinforced concrete chimney under three conditions can meet the original design requirements, but the maximum compressive stress at the bottom approaches the designed tensile limit value under the action of rare earthquakes; under these conditions, the bottom of the chimney may experience partial damage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic analysis of RCC chimneys subjected to near-fault ground motions;Asian Journal of Civil Engineering;2023-12-21

2. SRv6-INT: Runtime Monitoring for Green Service Function Chaining in B5G-MEC;ICC 2023 - IEEE International Conference on Communications;2023-05-28

3. Modeling and simulation for wear prediction in planar mechanical systems with multiple clearance joints;Nonlinear Dynamics;2022-03-04

4. A method for along-wind vibration control of chimneys by tuning liners;Engineering Structures;2022-02

5. Scaling of RC Chimney for the Experimental Investigation under Lateral Load;International Journal of Innovative Technology and Exploring Engineering;2021-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3