Analysis of the Spatial Vibration of Nonprismatic Arches by Means of Recurrence Relations for the Coefficients of the Chebyshev Series Expansion of the Solution

Author:

Ruta P.1ORCID,Meissner M.2ORCID

Affiliation:

1. The Faculty of Civil Engineering, Wrocław University of Science and Technology, Wrocław, Poland

2. The Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland

Abstract

The problem of spatial vibrations, both aperiodically forced and free vibrations, of an arch with an arbitrary distribution of material and geometric parameters is considered. Approximation with Chebyshev series was used to solve a conjugated system of partial differential equations describing the problem. The system of differential equations was solved using an algorithm generating a recursive infinite system of equations, developed by S. Paszkowski in “Numerical applications of Chebyshev polynomials” (in Polish), Warsaw PWN, 1975. Since the coefficients of the obtained system of equations are defined by closed analytical formulas they can be directly used to solve any nonprismatic arch, without it being necessary to solve again the considered problem. The algorithm is highly accurate; i.e., already at a small approximation base it yields results agreeing with exact analytical solutions (obviously for problems in the case of which such solutions can be derived). In order to demonstrate this the eigenfrequencies and eigenvectors obtained for a circular prismatic arch were compared with their precise values determined from the exact analytical solutions. The results yielded by the proposed method were also compared with the results obtained by other methods and by other authors. As an illustration, the proposed method was used to solve a more complex problem, i.e., the problem of the free and aperiodically forced vibrations of a nonprismatic arch with its axis described by a catenary curve. In the example the effect of the lack of cross-sectional symmetry of the arch on the form of the system’s spatial free and forced vibrations was analysed.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3