Systems Biology and Synthetic Biology: A New Epoch for Toxicology Research

Author:

Mc Auley Mark T.1,Choi Hyunok2ORCID,Mooney Kathleen3,Paul Emily4,Miller Veronica M.25

Affiliation:

1. Faculty of Science and Engineering, University of Chester, Thornton Science Park, Chester CH2 4NU, UK

2. Departments of Environmental Health Sciences, Epidemiology and Biostatistics, SUNY Albany, School of Public Health, One University Place, Rm 153, Rensselaer, NY 12144-3456, USA

3. Faculty of Health and Social Care, Edge Hill University, St. Helens Road, Ormskirk, Lancashire L39 4QP, UK

4. Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA

5. Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA

Abstract

Systems biology and synthetic biology are emerging disciplines which are becoming increasingly utilised in several areas of bioscience. Toxicology is beginning to benefit from systems biology and we suggest in the future that is will also benefit from synthetic biology. Thus, a new era is on the horizon. This review illustrates how a suite of innovative techniques and tools can be applied to understanding complex health and toxicology issues. We review limitations confronted by the traditional computational approaches to toxicology and epidemiology research, using polycyclic aromatic hydrocarbons (PAHs) and their effects on adverse birth outcomes as an illustrative example. We introduce how systems toxicology (and their subdisciplines, genomic, proteomic, and metabolomic toxicology) will help to overcome such limitations. In particular, we discuss the advantages and disadvantages of mathematical frameworks that computationally represent biological systems. Finally, we discuss the nascent discipline of synthetic biology and highlight relevant toxicological centred applications of this technique, including improvements in personalised medicine. We conclude this review by presenting a number of opportunities and challenges that could shape the future of these rapidly evolving disciplines.

Funder

Alexander and Bo McInnis and the Autism Research Institut

Publisher

Hindawi Limited

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3