Experimental Investigation of the Thermal Expansion Characteristics of Anthracite Coal Induced by Gas Adsorption

Author:

Wang Ran1,Su Xianbo1234,Yu Shiyao1ORCID,Su Linan5,Hou Jie6,Wang Qian1

Affiliation:

1. Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, China

2. Unconventional Gas Research Institute, Henan Polytechnic University, Jiaozuo 454003, China

3. School of Energy Resources, China University of Geosciences, Wuhan 430074, China

4. Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Jiaozuo 454003, China

5. The University of New South Wales, Sydney 2052, Australia

6. Petrochina Coalbed Methane Company Limited Linfen Branch, Linfen 042202, China

Abstract

The coal matrix can expand after gas adsorption, thus reducing the permeability of coal reservoirs and further affecting the coalbed methane production. Whether the heat released by coal adsorbing gas is a cause of the coal expansion has not yet been determined. Therefore, the anthracite coal with high gas adsorption capacity was used; under the conditions of 35°C and 1-6 MPa, the adsorption capacity and the adsorption heat of coal adsorbing CO2 and CH4 were tested. The specific heat capacity and thermal expansion coefficient of coal at 35°C were tested. The temperature change of the coal after being heated was calculated by combining the absorption heat and specific heat capacity; also, the thermal expansion rate was calculated by combining the temperature change and expansion coefficient. In addition, the cube law was used to calculate the permeability change of coal before and after the adsorption expansion. The results show that the changes in the gas adsorption capacity and adsorption heat of the coal obey the Langmuir equation, and those to CO2 are both higher than to CH4. The temperature of coal increases after the heat is released in the process of CO2 and CH4 adsorption, and the temperature change of coal adsorbing CO2 and CH4 reaches 102°C and 72°C, respectively, at 6 MPa. The thermal expansion rate of coal adsorbing CO2 and CH4 reaches 5.40% and 3.81%, at 6 MPa, respectively. It is found that a higher gas pressure could lead to a higher temperature change, a higher thermal expansion rate, as well as a higher thermal expansion and coal deformation. After the adsorption of CO2 and CH4, the coal permeability is reduced by 20.43% and 14.66%, respectively, at 6 MPa. Both the thermal expansion rate and the permeability change with the gas adsorption pressure obey the Langmuir equation. Therefore, the adsorption expansion of coal may be thermal expansion caused by the heat released by coal adsorbing gas.

Funder

Science and Technology Major Project of Shanxi Province

Publisher

SAGE Publications

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on Prospective Carbon Dioxide Storage Resources at Hwasun Coal Mine;Journal of the Korean Society of Mineral and Energy Resources Engineers;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3