Conditioning with Lime and Fertilizer Improves Ionic Rare Earth Mine Tailings

Author:

Zhang Qin1ORCID,Shen Dongmei1ORCID,Luo Jie1ORCID,Wan Guanyue1ORCID,Zhou Caiyun1ORCID,Zhao Xiaomin1ORCID

Affiliation:

1. Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, College of Land Resources and Environment, Jiangxi Agricultural University, Jiangxi Province, Nanchang 330045, China

Abstract

To explore rare earth mine tailings improvement technology without soil dressing, we planted Chinese cabbage in pots to determine the effect of different amounts of lime combined with fertilizer on the improvement of ionic rare earth mine tailings, aiming to provide a scientific basis for the reclamation of abandoned ionic rare earth mines. The results showed that the soil substrate of the tested rare earth tailings exhibited four forms of degradation: soil acidification, soil desertification, nutrient depletion, and heavy metal contamination by rare earth elements (REEs). The application of fertilizer alone (CK treatment) did not support Chinese cabbage growth, whereas different amounts of lime combined with fertilizer supported plant growth and significantly reduced the activity of the rare earth heavy metals. The height, fresh weight, and REE content of the Chinese cabbage plants were significantly reduced with an increase in the amount of lime applied. Addition of lime not only significantly improved the soil pore space and reduced soil acidification but also significantly increased the soil nutrient content. Our findings suggest that lime combined with fertilizer can improve ionic rare earth mine tailing soil degradation, thus promoting plant growth and achieving the improvement of ionic rare earth mine tailings without soil dressing.

Funder

Key Research Foundation of Education Bureau of Jiangxi Province

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3