VFC: The Vienna Fortran Compiler

Author:

Benkner Siegfried1

Affiliation:

1. Institute for Software Technology and Parallel Systems, University of Vienna, Liechtenstein Strasse 22, A‐1090 Vienna, Austria

Abstract

High Performance Fortran (HPF) offers an attractive high‐level language interface for programming scalable parallel architectures providing the user with directives for the specification of data distribution and delegating to the compiler the task of generating an explicitly parallel program. Available HPF compilers can handle regular codes quite efficiently, but dramatic performance losses may be encountered for applications which are based on highly irregular, dynamically changing data structures and access patterns. In this paper we introduce the Vienna Fortran Compiler (VFC), a new source‐to‐source parallelization system for HPF+, an optimized version of HPF, which addresses the requirements of irregular applications. In addition to extended data distribution and work distribution mechanisms, HPF+ provides the user with language features for specifying certain information that decisively influence a program’s performance. This comprises data locality assertions, non‐local access specifications and the possibility of reusing runtime‐generated communication schedules of irregular loops. Performance measurements of kernels from advanced applications demonstrate that with a high‐level data parallel language such as HPF+ a performance close to hand‐written message‐passing programs can be achieved even for highly irregular codes.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparso;Proceedings of the 2016 International Conference on Parallel Architectures and Compilation;2016-09-11

2. Automatic Exploration of Potential Parallelism in Sequential Applications;Lecture Notes in Computer Science;2014

3. Automatic Source Code Transformation for GPUs Based on Program Comprehension;Euro-Par 2011: Parallel Processing Workshops;2012

4. Agent-Supported Programming of Multicore Computing Systems;Complex Intelligent Systems and Their Applications;2010

5. Extending Automatic Parallelization to Optimize High-Level Abstractions for Multicore;Evolving OpenMP in an Age of Extreme Parallelism;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3