Effects of High-Concentration CO2 on Ignition Delay Time of 70% n-Heptane/30% Toluene Mixtures

Author:

Yao Shengzhuo1,Zhang Yuewei1,Liu Yongfeng1ORCID,Bi Guijun2ORCID,Zhang Lu1,Wei Ping3,Song Jinou4,Sun Hua5

Affiliation:

1. Beijing Engineering Research Center of Monitoring for Construction Safety, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

2. Singapore Institute of Manufacturing Technology (SIMTech), 73 Nanyang Drive, 637662, Singapore

3. School of Civil Engineering and Survey, Beijing Polytechnic College, Beijing 100042, China

4. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

5. School of Humanities, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

In order to research the high-concentration CO2 effects on ignition delay time (IDT) of diesel surrogate fuel (70% n-heptane/30% toluene), a carbon dioxide effect (CDE) model is established, which considers fuel and ambient gas concentration, density, and temperature influence on autoignition under CO2/O2 atmosphere. Firstly, a chemical model of n-heptane/toluene is established, and the coupling, reduction, and simulation processes are carried out in chemical kinetic software with the IDT as the target parameter. Secondly, a constant volume combustion chamber (CVCC) visualization platform is built by incorporating a high-speed camera system and different working conditions are set in the CO2 volume fraction range (40%-70%) at 3.0 MPa and 850 K for an autoignition experiment. Thirdly, experiment and simulation results are discussed in air, 60% CO2/40% O2, 50% CO2/50% O2, and 40% CO2/60% O2 atmospheres, including the IDT, CO2 effects, temperature sensitivity, and OH radical rate of production (ROP). The results show that the CDE model well predicts the 70% n-heptane/30% toluene IDT under the CO2/O2 atmosphere and the average error in 60% CO2/40% O2 atmosphere is 5.29%. Besides, when the CO2 volume fraction increases from 40% to 60%, the CO2 thermal effect plays a leading role in the IDT prolongation and the OH radical ROP peak of R4 (O+H2O⟶2OH) decreases by 180%.

Funder

Beijing University of Civil Engineering and Architecture

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3