The Targeting of Noncoding RNAs by Quercetin in Cancer Prevention and Therapy

Author:

Wang Man1ORCID,Chen Xinzhe1ORCID,Yu Fei1ORCID,Zhang Lei1ORCID,Zhang Yuan1ORCID,Chang Wenguang1ORCID

Affiliation:

1. Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China

Abstract

The dietary flavonoid quercetin is ubiquitously distributed in fruits, vegetables, and medicinal herbs. Quercetin has been a focal point in recent years due to its versatile health-promoting benefits and high pharmacological values. It has well documented that quercetin exerts anticancer actions by inhibiting cell proliferation, inducing apoptosis, and retarding the invasion and metastasis of cancer cells. However, the exact mechanism of quercetin-mediated cancer chemoprevention is still not fully understood. With the advances in high-throughput sequencing technologies, the intricate oncogenic signaling networks have been gradually characterized. Increasing evidence on the close association between noncoding RNA (ncRNAs) and cancer etiopathogenesis emphasizes the potential of ncRNAs as promising molecular targets for cancer treatment. Available experimental studies indicate that quercetin can dominate multiple cancer-associated ncRNAs, hence repressing carcinogenesis and cancer development. Thus, modulation of ncRNAs serves as a key mechanism responsible for the anticancer effects of quercetin. In this review, we focus on the chemopreventive effects of quercetin on cancer pathogenesis by targeting cancer-relevant ncRNAs, supporting the viewpoint that quercetin holds promise as a drug candidate for cancer chemoprevention and chemotherapy. An in-depth comprehension of the interplay between quercetin and ncRNAs in the inhibition of cancer development and progression will raise the possibility of developing this bioactive compound as an anticancer agent that could be highly efficacious and safe in clinical practice.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3