Design of a Magnetic Interaction-Based Vibration Absorber for Continuous Beam

Author:

Jiao Guyue1ORCID

Affiliation:

1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai, China

Abstract

Classical absorber for vibration suppression of a continuous structure is constructed as a spring-mass oscillator, which only provides coupling force to suppress the vibration of primary structure. In this study, absorber beam is introduced and coupled on the continuous primary beam with magnetic interaction. Thus, the magnetic interaction and coupling bending moment affect the responses of primary beam. Based on the model of the system and Galerkin truncation, the natural frequencies for different magnetic parameters are obtained, which demonstrates that the fundamental frequency can be reduced to zero and the vibration of primary beam can be suppressed in a wide frequency band. Considering the vibration suppression on frequency band, we propose two criteria to evaluate the vibration suppression effect: one is the width of band for vibration suppression and the other is the width for vibration absorption. The two criteria not only show the vibration reduction effect but also correspond to different vibration suppression mechanism. Due to the advantages of zero fundamental frequency induced by the proposed magnetic interaction coupling and wide vibration suppression frequency band, utilizing absorber beam in vibration suppression of continuous structure has potential applications for flexible aim in the fields of manufacturing and aerospace.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3