FLGC-Fusion GAN: An Enhanced Fusion GAN Model by Importing Fully Learnable Group Convolution

Author:

Yuan C.1ORCID,Sun C. Q.1ORCID,Tang X. Y.1ORCID,Liu R. F.1ORCID

Affiliation:

1. School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China

Abstract

The purpose of image fusion is to combine the source images of the same scene into a single composite image with more useful information and better visual effects. Fusion GAN has made a breakthrough in this field by proposing to use the generative adversarial network to fuse images. In some cases, considering retain infrared radiation information and gradient information at the same time, the existing fusion methods ignore the image contrast and other elements. To this end, we propose a new end-to-end network structure based on generative adversarial networks (GANs), termed as FLGC-Fusion GAN. In the generator, using the learnable grouping convolution can improve the efficiency of the model and save computing resources. Therefore, we can have a better trade-off between the accuracy and speed of the model. Besides, we take the residual dense block as the basic network building unit and use the perception characteristics of the inactive as content loss characteristics of input, achieving the effect of deep network supervision. Experimental results on two public datasets show that the proposed method performs well in subjective visual performance and objective criteria and has obvious advantages over other current typical methods.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3