Affiliation:
1. Dipartimento di Matematica e Informatica, Università della Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende, Italy
Abstract
Let n, d, and r be three integers such that 1≤r, d≤n. Chiaselotti (2002) defined γn,d,r as the minimum number of the nonnegative partial sums with d summands of a sum ∑1=1nai≥0, where a1,…,an are n real numbers arbitrarily chosen in such a way that r of them are nonnegative and the remaining n-r are negative. Chiaselotti (2002) and Chiaselotti et al. (2008) determine the values of γn,d,r for particular infinite ranges of the integer parameters n, d, and r. In this paper we continue their approach on this problem and we prove the following results: (i) γ(n,d,r)≤(rd)+(rd-1) for all values of n, d, and r such that (d-1)/dn-1≤r≤(d-1)/dn; (ii) γd+2,d,d=d+1.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献