Sestrin2 Overexpression Ameliorates Endoplasmic Reticulum Stress-Induced Apoptosis via Inhibiting mTOR Pathway in HepG2 Cells

Author:

Hu Huiling12ORCID,Luo Zhijun3,Liu Xiuli12,Huang Lisi12,Lu Xiaoxia12,Ding Rui12ORCID,Duan Chaohui12ORCID,He Yuqing4ORCID

Affiliation:

1. Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China

2. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China

3. Department of Emergency, The Seventh Affiliated Hospital, Southern Medical University, Foshan, Guangdong 528244, China

4. Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China

Abstract

Sestrin2 is a highly conserved stress-inducible protein, acting as a crucial part in regulating homeostasis in response to various stress conditions in the cell. However, the role of Sestrin2 in regulating cell apoptosis related to endoplasmic reticulum (ER) has not been fully investigated. Our study presented here aims to reveal the effect of Sestrin2 in tunicamycin (TM)-induced cell apoptosis related to ER stress and its underlying molecular mechanisms. The results demonstrated that Sestrin2 expression was significantly upregulated correlated with ER stress responses in TM treated HepG2 cells. Sestrin2 overexpression obviously alleviated ER stress with the determination of ER stress-related proteins expression. In addition, Sestrin2 overexpression inhibited cell apoptosis with the examination of apoptosis-related proteins and TUNEL assay. However, Sestrin2 knockdown further promoted the ER stress-mediated cell apoptosis. The further mechanistic study revealed that Sestrin2 overexpression inhibited TM-induced mTOR pathway activation. Taken together, our current study indicated that Sestrin2 overexpression ameliorates ER stress-induced apoptosis via inhibiting mTOR pathway in HepG2 cells.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3