Optimal Scheduling Model of WDM/OTN Network Transmission Line Based on Machine Learning

Author:

Zhao Jianhua1ORCID,Li Jingquan2ORCID,Fan Huicong1ORCID,Li Wenxiao1ORCID,Zhang Jingna3ORCID,Dai Xiaoyuan3ORCID

Affiliation:

1. State Grid Hebei Economic Research Institute, Shijiazhuang, Hebei 050000, China

2. State Grid Hebei Electric Power Co., Ltd., Shijiazhuang, Hebei 050000, China

3. Powerchina Hebei Electric Power Engineering Co., Ltd., Shijiazhuang, Hebei 050000, China

Abstract

In order to solve the problem that the influencing factors are difficult to parameterize in the design and development of WDM/OTN backbone network routing planning tools, the author proposes an optimal scheduling model for WDM/OTN network transmission lines based on machine learning. Using the machine learning classification algorithm as a tool, the weight coefficients of each constraint factor are extracted from the historical design decisions, and the routing parameter model is constructed, so as to realize the intelligent routing selection, through actual simulation analysis and engineering verification. Simulation results show that after the historical routing regression test, the path coincidence rate of the route obtained by the algorithm and the historical real decision-making route reaches 81%, and the resource hit rate reaches 84%, which meets the requirements for actual production. Conclusion. This method can accurately and effectively generate network weight parameters so that the software routing is more intelligent.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3