Application of BP Neural Network Improved by Fireworks Algorithm on Suspender Damage Prediction of Long-Span Half-Through Arch Bridge

Author:

Guo Jian1ORCID,Guo Wu2ORCID

Affiliation:

1. College of Architecture and Civil Engineering, Qiqihar University, Qiqihar 161000, China

2. College of Communication and Electronic Engineering, Qiqihar University, Qiqihar 161000, China

Abstract

In recent decades, with the large-scale construction and rapid development of half-through arch bridges, as well as the increase of bridge service time, the suspender damage of arch bridge has become increasingly prominent. Therefore, real-time monitoring and regular detection of the health of arch bridge suspenders and timely detection and accurate judgment of the damage location and extent of suspenders are of great engineering significance for evaluating the reliability and residual life of arch bridge structures. By analyzing the main difficulties and existing problems of suspender damage identification, this paper takes the change rate of modal curvature as the damage index, introduces fireworks algorithm into the neural network model, optimizes the optimization process of neural network weight and threshold, and proposes a prediction model based on improved BP neural network by fireworks algorithm. According to the measured data of the damage degree of a long-span arch bridge in daily monitoring and on-site inspection, the proposed prediction method is applied to verify the effectiveness and accuracy in engineering health detection. On this basis, the improved BP neural network by fireworks algorithm is used to predict the suspender damage of a certain long-span half-through arch bridge, which provides an important basis for the actual bridge safety assessment.

Funder

Heilongjiang Province Government of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3