Discharge and Optical Emission Spectrum Characteristics of a Coaxial Dielectric Barrier Discharge Plasma-Assisted Combustion Actuator

Author:

Liu Pengfei12ORCID,He Liming23,Zhao Bingbing3

Affiliation:

1. Graduate School, Air Force Engineering University, Xi’an 710051, China

2. Science and Technology on Plasma Dynamics Laboratory, Aeronautic Engineering College, Air Force Engineering University, Xi’an 710038, China

3. Aeronautic Engineering College, Air Force Engineering University, Xi’an 710038, China

Abstract

A coaxial dielectric barrier discharge plasma-assisted combustion actuator (DBD-PACA) system was set up to study its discharge and optical emission spectrum (OES) characteristics in space in this paper. Results showed that each discharge cycle can be divided into four stages: a, b, c, and d. Discharge-on only occurred in stages b and d. Comparatively, the discharge intensity was larger in stage d due to the memory effect of excited electrons. Moreover, Lissajous figure and current-voltage methods were utilized to calculate the power of the coaxial DBD-PACA, and both methods produced roughly similar results. The power presented an upward trend with increasing input voltage and airflow rate. In addition, numerous second positive system (SPS) excited nitrogen molecules were detected from the OES signals. The intensity of the spectral lines (297.54 nm, 315.76 nm, 336.96 nm, and 357.56 nm) first increased, then maintained, and then increased rapidly with the increased radius; however, the intensity of the spectral lines (380.34 nm, 405.80 nm, and 434.30 nm) basically remained unchanged, then increased, and finally decreased with the increased radius. The vibrational temperature first decreased quickly and then increased and reached the minimum at r = 18 mm with the increased radius. The vibrational temperatures at all collection points decreased with the increased input voltage. However, within the range of 0–280 L/min, when r was lower than 15 mm, the vibrational temperatures first increased rapidly and then decreased slowly; when r was greater than 15 mm, the vibrational temperatures first increased and then basically remained stable.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3