Exploring the Potential Mechanism of Qi-Shen-Di-Huang Drug Formulary for Myasthenia Gravis (MG) based on UHPLC-QE-MS Network Pharmacology and Molecular Docking Techniques

Author:

Zhang Yibin1ORCID,Chang Tianying2,Lu Qi3,Cui Yingzi2,Zhang Dongmei4,Wang Baitong1,Xu Peng1,Lu Jing5,Ma Jinhui6,Lv Zhiguo1ORCID,Wang Jian1ORCID

Affiliation:

1. Department of Neurology, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China

2. Evidence Based Office, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China

3. Medical Insurance Office, The Third Affiliated Clinical Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China

4. Scientific Research Office, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China

5. Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China

6. Department of Health Research, Evidence, and Impact, McMaster University, Hamilton ON, Canada

Abstract

Myasthenia gravis (MG) is a rare and refractory autoimmune disease, and Qi Shen Di Huang (QSDH) drug formulary is an in-hospital herbal decoction with proven clinical efficacy in treating MG. Currently, most of the research on the QSDH drug formulary has concentrated on its clinical efficacy, and there is a lack of systematic study on the material basis. The active compounds and their mechanism of action have not been entirely determined. Therefore, this study sought to identify the active compounds in the QSDH drug formulary and analyze the key targets and potential mechanisms. We used ultra-performance liquid chromatography Q Exactive-mass spectrometry (UHPLC-QE-MS) and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database to identify and screen 85 active ingredients corresponding to 59 potential targets (17 herbs) associated with myasthenia gravis, and further identified AKT1 as the primary core target and the PI3K/AKT signaling pathway as the most substantial enriched pathway. Molecular docking and UPLC-MS analysis identified quercetin, luteolin, wogonin, kaempferol, laccasein, and epigallocatechin gallate are the core compounds of the QSDH drug formulary. In vivo rat studies showed that the QSDH drug formulary reduced Lennon’s clinical score and decreased acetylcholine receptor antibody levels in peripheral blood rats with experimental autoimmune myasthenia gravis. In addition, the QSDH drug formulary downregulated P-PI3K/PI3K and P-Akt/Akt protein expression. Collectively, these findings describe the role and potential mechanism of the QSDH drug formulary in the treatment of MG, which exerts potential value by acting on AKT targets and regulating the PI3K/AKT signaling pathway and providing a theoretical reference for QSDH drug formulary application in the clinical treatment of MG.

Funder

Jilin Province Development and Reform Commission

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dexamethasone improves thymoma-associated myasthenia gravis via the AKT-mTOR pathway;Naunyn-Schmiedeberg's Archives of Pharmacology;2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3