Learning Feature Fusion in Deep Learning-Based Object Detector

Author:

Hassan Ehtesham1ORCID,Khalil Yasser2,Ahmad Imtiaz3

Affiliation:

1. Department of Computer Science and Engineering, Kuwait College of Science and Technology, Kuwait City, Kuwait

2. University of Ottawa, Ottawa, Canada

3. Department of Computer Engineering, Kuwait University, Kuwait City, Kuwait

Abstract

Object detection in real images is a challenging problem in computer vision. Despite several advancements in detection and recognition techniques, robust and accurate localization of interesting objects in images from real-life scenarios remains unsolved because of the difficulties posed by intraclass and interclass variations, occlusion, lightning, and scale changes at different levels. In this work, we present an object detection framework by learning-based fusion of handcrafted features with deep features. Deep features characterize different regions of interest in a testing image with a rich set of statistical features. Our hypothesis is to reinforce these features with handcrafted features by learning the optimal fusion during network training. Our detection framework is based on the recent version of YOLO object detection architecture. Experimental evaluation on PASCAL-VOC and MS-COCO datasets achieved the detection rate increase of 11.4% and 1.9% on the mAP scale in comparison with the YOLO version-3 detector (Redmon and Farhadi 2018). An important step in the proposed learning-based feature fusion strategy is to correctly identify the layer feeding in new features. The present work shows a qualitative approach to identify the best layer for fusion and design steps for feeding in the additional feature sets in convolutional network-based detectors.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3