A Hybrid Epigraph Directions Method for Nonsmooth and Nonconvex Constrained Optimization via Generalized Augmented Lagrangian Duality and a Genetic Algorithm

Author:

Freire Wilhelm P.1,Lemonge Afonso C. C.2ORCID,Fonseca Tales L.3ORCID,Franco Hernando J. R.3ORCID

Affiliation:

1. Department of Mathematics, Institute of Exact Sciences, Federal University of Juiz de Fora, Brazil

2. Department of Applied and Computational Mechanics, Faculty of Engineering, Federal University of Juiz de Fora, Brazil

3. Postgraduate Program of Computational Modeling, Federal University of Juiz de Fora, Brazil

Abstract

The Interior Epigraph Directions (IED) method for solving constrained nonsmooth and nonconvex optimization problem via Generalized Augmented Lagrangian Duality considers the dual problem induced by a Generalized Augmented Lagrangian Duality scheme and obtains the primal solution by generating a sequence of iterates in the interior of the epigraph of the dual function. In this approach, the value of the dual function at some point in the dual space is given by minimizing the Lagrangian. The first version of the IED method uses the Matlab routine fminsearch for this minimization. The second version uses NFDNA, a tailored algorithm for unconstrained, nonsmooth and nonconvex problems. However, the results obtained with fminsearch and NFDNA were not satisfactory. The current version of the IED method, presented in this work, employs a Genetic Algorithm, which is free of any strategy to handle the constraints, a difficult task when a metaheuristic, such as GA, is applied alone to solve constrained optimization problems. Two sets of constrained optimization problems from mathematics and mechanical engineering were solved and compared with literature. It is shown that the proposed hybrid algorithm is able to solve problems where fminsearch and NFDNA fail.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3