Essential Role of Thioredoxin 2 in Mitigating Oxidative Stress in Retinal Epithelial Cells

Author:

Sugano Eriko1,Murayama Namie1,Takahashi Maki1,Tabata Kitako1,Tamai Makoto2,Tomita Hiroshi1345

Affiliation:

1. Department of Chemistry and Bioengineering, Faculty of Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan

2. School of Medicine, Tohoku University, 2-1 Seiryou-machi, Sendai 980-8574, Japan

3. Graduate School of Medicine, Tohoku University, 2-1 Seiryou-machi, Sendai 980-8574, Japan

4. Clinical Research, Innovation and Education Center, Tohoku University Hospital, 2-1 Seiryou-machi, Sendai 980-8574, Japan

5. Laboratory of Visual Neuroscience, Department of Chemistry and Bioengineering, Faculty of Engineering, Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan

Abstract

The retina is constantly subjected to oxidative stress, which is countered by potent antioxidative systems present in retinal pigment epithelial (RPE) cells. Disruption of these systems leads to the development of age-related macular degeneration. Thioredoxin 2 (Trx2) is a potent antioxidant, which acts directly on mitochondria. In the present study, oxidative stress was induced in the human RPE cell line (ARPE-19) using 4-hydroxynonenal (4-HNE) or C2-ceramide. The protective effect of Trx2 against oxidative stress was investigated by assessing cell viability, the kinetics of cell death, mitochondrial metabolic activity, and expression of heat shock proteins (Hsps) in Trx2-overexpressing cell lines generated by transfecting ARPE cells with an adeno-associated virus vector encoding Trx2. We show that overexpression of Trx2 reduced cell death induced by both agents when they were present in low concentrations. Moreover, early after the induction of oxidative stress Trx2 played a key role in the maintenance of the cell viability through upregulation of mitochondrial metabolic activity and inhibition of Hsp70 expression.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Publisher

Hindawi Limited

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3