Utilising Network Pharmacology to Explore Underlying Mechanism of Astragalus membranaceus in Improving Sepsis-Induced Inflammatory Response by Regulating the Balance of IκBα and NF-κB in Rats

Author:

Yu Haiyang1ORCID,Ling Qihua2,Cai Jingwen2,Zhang Mengzhi3,Liu Huaiquan1ORCID,Chen Yunzhi1ORCID

Affiliation:

1. Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China

2. Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

3. The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China

Abstract

Objective. The purpose of the present study was to explore the mechanism of Astragalus membranaceus in the treatment of sepsis. Methods. We searched the active components and targets of Astragalus membranaceus using the TCMSP and BATMAN databases. Then, the GeneCards, MalaCards, and OMIM databases were used to screen out relevant targets of sepsis. The common targets of the former two gene sets were uploaded to the STRING database to create an interaction network. DAVID was used to perform KEGG enrichment analysis of the core targets. Based on the results of KEGG and previous studies, key pathways for the development of sepsis were identified and experimentally validated. Result. We obtained 3,370 sepsis-related targets in databases and 59 active components in Astragalus membranaceus through data mining, corresponding to 1,130 targets. The intersection of the two types of targets led to a total of 318 common targets and 84 core targets were obtained after screening again. The KEGG and previous studies showed that these 84 core targets were involved in sepsis by regulating TNF, MAPK, and PI3K pathways. TNF, MAPK8, NF-κB, and IκBα are crucial in sepsis. Experimental validation demonstrated that some markers in sepsis model rats were improved after the intervention with Astragalus granules and their chemical components. Among them, IL-1β, IL-6, and TNF-α in rat serum were reduced. The mRNA and protein expression of TNF-α, IL-6, MMP9, MAPK8, and NF-κB were reduced in rat blood. However, the mRNA and protein expression of IκBα and PI3K were increased in rat blood. Conclusion. The AST could affect the TNF, PI3K, and MAPK pathway cascade responses centred on IκBα and NF-κB, attenuate the expression of IL-6 and MMP9, and interfere with the inflammatory response during sepsis.

Funder

Science and Technology Plan Project of Guizhou Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3