Bioinformatics Analysis Reveals the Related Role of miR-511-5p in the Progression of Breast Cancer

Author:

Wang Teng12,Liu Jinquan3,Zhong Rui2,Zhang Yidan2,Sun Zhenxuan2,Li Jutao1,Hu Gang1,Sun Li1,Liu Jintao1ORCID

Affiliation:

1. Department of Thyroid Surgery, Dalian Central Hospital Affiliated to Dalian Medical University, Dalian, 116033, Liaoning Province, China

2. Dalian Medical University, Dalian 116041, Liaoning Province, China

3. Department of Clinical Medicine, Datong University School of Medicine, Datong, 037008, Shanxi Province, China

Abstract

Breast cancer remains a dangerous disease, and delving the molecular mechanism of breast cancer is still necessary. To illustrate the role of miR-511-5p, TCGA database was used to excavate the abundance of miR-511-5p, and the miR-511-5p level was measured in the pathological tissues and tumor cell lines. Moreover, the targets of miR-511-5p were identified with miRDIP and GEPIA and then were used for functional enrichment analysis. Besides, the targets of miR-511-5p were analyzed with the protein-protein interaction (PPI) network for the hub nodes, and then the expression levels of the hub nodes were visualized with the GEPIA database. The results showed that miR-511-5p was significantly downregulated in multiple types of tumor samples in the online database, and the downregulated miR-511-5p was also found in pathological tissues and tumor cell lines. Moreover, 48 genes were identified as the potential targets of miR-511-5p by miRDIP and GEPIA databases and enriched in cell cycle, PI3K/AKT, and P53 pathways. Besides, seven genes including BRCA1, FN1, CCNE1, CCND1, CHEK1, BUB3, and CDC25A were identified as the hub nodes by the PPI network, and CCNE1 and CHEK1 were confirmed to be related with the prognostic survival of the patients with breast cancer. In conclusion, the proofs in this study suggest that reduced miR-511-5p was a biomarker event for breast cancer, and CCNE1 and CHEK1 served as potential targets of miR-511-5p to involve the progression of breast cancer.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3