Research on Digital Steganography and Image Synthesis Model Based on Improved Wavelet Neural Network

Author:

Li Xujie12ORCID,Yao Rujing23ORCID,Lee Jonghan3ORCID

Affiliation:

1. Department of Art, Tianjin Renai College, Tianjin 301636, China

2. Department of Formative Convergence Arts, Hoseo University, Asan 31499, Republic of Korea

3. Academy of Art and Design, Anhui University of Technology, Ma’ anshan, Anhui 243002, China

Abstract

Network compression coding technology is a research hotspot in the field of digital steganography and image synthesis. How to improve image quality while achieving short compression time is a problem currently faced. Based on the improved wavelet neural network theory, this paper constructs a digital steganography and image synthesis model. The model first tracks the contour of the digit to be recognized, then equalizes and resamples the contour to make it translation-invariant and scaling-invariant, and then uses multi-wavelet neural network clusters to stretch the contour shell to obtain orders of magnitude multi-resolution and its average, and finally, these shell coefficients are fed into a feedforward neural network cluster to identify this handwritten digit, solving the problem of multi-resolution decomposition of contour shells while having a high sampling rate. In the simulation process, the classification model that a single pixel is a text/non-text pixel is trained on the original gray value of the gray pixel and its neighboring pixels, and the classified text pixels are connected to a text area through an adaptive MeanShift method. The experimental results show that it is feasible to use multi-wavelet features for handwritten digit recognition. The model combines the neural network and the genetic algorithm, making full use of the advantages of both, so that the new algorithm has the learning ability and robustness of the neural network. The compression ratio after compression by ordinary wavelet coding, PSNR, MSE, and compression time are 8.4, 25 dB, 210, and 7 s, respectively. The values are 11.7, 24 dB, 207, and 11 s, respectively. At the same time, the peak signal-to-noise ratio is higher and the mean square error is lower, that is, the compression quality is better, and the accuracy of digital steganography and image synthesis is effectively improved.

Funder

Tianjin Renai College

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Compression Technique Using Contour Coding and Wavelet Transform in Digital Image Processing;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. A Two Fold Secure Cover Synthesis Based Data Hiding Approach by Generating Sequences;Wireless Personal Communications;2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3