Enhancing the Applicability of Satellite Remote Sensing for PM 2.5 Estimation Using Machine Learning Models in China

Author:

Chai Jun12,Song Jun3ORCID,Xu Yawen2,Zhang Le1ORCID,Guo Bing1ORCID

Affiliation:

1. College of Computer Science, Sichuan University, China

2. Chengdu Hankang Information Industry Co., LTD, China

3. Department of Geography, Faculty of Social Sciences, Hong Kong Baptist University, China

Abstract

Numerous studies and monitoring data indicate that fine particle ( PM 2.5 ) pollution in China is still comparatively severe. Given the sparse and uneven distribution of air quality monitoring base stations established in China and the limitation of geographical conditions, inversion of aerosol optical depth by satellite remote sensing can achieve low-cost air quality monitoring in global areas. In this study, we use the machine learning algorithm XGBoost to build a prediction model to achieve nationwide average PM 2.5 concentration prediction. Meanwhile, we used aerosol data from Moderate Resolution Imaging Spectroradiometer (MODIS) in a specific band, combined with a land use regression (LUR) model as predictors of surface PM 2.5 concentrations in China, for the period Dec. 2019-Nov. 2021. In order to provide more accurate PM 2.5 concentration prediction, the correspondence between PM 2.5 and aerosol optical depth (AOD) under different seasons was studied. The coefficients of determination (R2) for different seasons are 0.86 (spring), 0.80 (summer), 0.90 (autumn), and 0.88 (winter), indicating that the fit is best for autumn and worse for summer. The study shows the potential usefulness of using the LUR model with the XGBoost algorithm for predictive assessment of PM 2.5 spatial distribution.

Funder

R&D Project of Chengdu City

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3