Overexpression of 14-3-3δ Predicts Poor Prognosis in Extrahepatic Cholangiocarcinoma Patients

Author:

Wu Qiao1,Fan Hua1,Lang Ren1,Li Xianliang1,Zhang Xingmao1,Lv Shaocheng1,He Qiang1ORCID

Affiliation:

1. Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing 100020, China

Abstract

The protein 14-3-3δ interacts with Trp53 to maintain G2 arrest and thus regulates the cell cycle. Though dysfunction of 14-3-3δ caused by hyper-methylation of CpG islands was reported in several carcinomas, the exact role of this protein in the development of extrahepatic cholangiocarcinoma has not been fully elucidated. Here, we aim at investigating the clinical relevance between 14-3-3δ and human extrahepatic cholangiocarcinoma. We collected extrahepatic cholangiocarcinoma specimens of 65 patients in Beijing Chao Yang Hospital and evaluated their 14-3-3δ expression using immunohistochemistry. We categorized the patients into different subgroups according to clinic pathological factors, such as sex, age, tumor size, pathological classification, lymph node metastasis status, tumor stage, and serum markers including CEA, CA-242, or CA19-9, and further evaluated the correlation between 14-3-3δ expression and these potential prognostic factors. As a result, we detected 14-3-3δ expression in 53 out of 65 specimens (81.5%), and the expression was positively correlated with TNM stage, lymph node metastasis, and overall survival. Our results suggest that 14-3-3δ serves as an oncogenic driver in extrahepatic cholangiocarcinoma tumorigenesis rather than a cell cycle regulator; the overexpression of 14-3-3δ might be frequently acquired by tumor cells to escape appropriate cell cycle regulation. Thus, 14-3-3δ could be a potential target for extrahepatic cholangiocarcinoma diagnosis and therapy.

Funder

Science and Technology Program of Beijing Education Commission

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3