The Lightweight RFID Grouping-Proof Protocols with Identity Authentication and Forward Security

Author:

Shi Zhicai1ORCID,Zhang Xiaomei1ORCID,Liu Jin1

Affiliation:

1. School of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

Abstract

In many fields, multiple RFID tags are often combined into a group to identify an object. An RFID grouping-proof protocol is utilized to prove the simultaneous existence of a group of tags. However, many current grouping-proof protocols cannot simultaneously provide privacy preserving, forward security, and the authentication between reader/verifier and tags, which are vulnerable to trace attack, privacy leakage, and desynchronization attack. To improve the secure performance of the current grouping-proof protocols, we propose two provable lightweight grouping-proof protocols that provide forward security, identity authentication, and privacy preserving. Our protocols involve a trusted reader and an untrusted reader, respectively. In order to avoid verifying some invalid evidences, our protocols complete the authentication of the verifier to the trusted reader and the verified tags before the verifier verifies the grouping-proof evidence. Each tag uses parallel mode to complete its signature to improve the efficiency of the protocols. Moreover, the activate-sleep mechanism and the filtering operation are proposed to effectively reduce the collision probability and computing load of tags. Our protocols complete the authentication to tags twice by a verifier and a trusted reader, respectively. They can resist various attacks such as eavesdropping, replay, trace, and desynchronization. The protocols are proven to be secure, flexible, and efficient. They only utilize some lightweight operations. Therefore, they are very suitable to the low-cost RFID systems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3