Affiliation:
1. School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
2. The First People’s Hospital of Dongcheng District, Beijing 100075, China
3. First Hospital Affiliated to Tianjin College of Traditional Chinese Medicine, Tianjin 300193, China
4. The Second Affiliated Hospital of Guangdong University of Traditional Chinese Medicine, Guangdong 510120, China
Abstract
Objective. By observing the needle-knife of KOA rabbit morphology, knee joint cartilage p-FAK, p-PI3K, Aggrecan gene, and protein expression, to study the effect of needle-knife to promote cartilage cell synthesis metabolism mechanism. Method. 49 male New Zealand rabbits, randomly divided into normal group (Z), model group (M), model-inhibitors (MP), needle-knife group (D), needle-knife inhibitors group (DP), electroacupuncture group (E), and electroacupuncture inhibitors (EP). RT-PCR and Western Blot were used to test each animal cartilage p-FAK, p-PI3K, and Aggrecan gene and protein expression level. Results. Compared with N group, p-FAK and p-PI3K protein and mRNA expression of M group, D group, and E group increased (P < 0.05), while the protein and mRNA expression of Aggrecan reduced (P < 0.05). Compared with M group, p-FAK, p-PI3K, Aggrecan protein, and mRNA of E and D group increased (P < 0.05). Compared with E group, p-FAK, p-PI3K, Aggrecan protein, and mRNA expression of D group increased (P < 0.05); after adding inhibitors, p-FAK, p-PI3K, Aggrecan protein, and mRNA expression reduced (P < 0.05). Conclusion. Needle-knife therapy can promote the repairment of cartilage cells by activating FAK-PI3K signaling pathways, promoting the synthesis of cartilage cell metabolism.
Funder
National Natural Science Foundation of China
Subject
Complementary and alternative medicine
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献