Experimental Study of Stress-Seepage Coupling Properties of Sandstone under Different Loading Paths

Author:

Chen Xi12,Wang Wei12ORCID,Cao Yajun12,Zhu Qizhi12,Xu Weiya12,Ruan Huaining12

Affiliation:

1. Geotechnical Research Institute, Hohai University, Nanjing, Jiangsu 210098, China

2. Key Laboratory of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu 210098, China

Abstract

The study on hydromechanical coupling properties of rocks is of great importance for rock engineering. It is closely related to the stability analysis of structures in rocks under seepage condition. In this study, a series of conventional triaxial tests under drained condition and hydrostatic compression tests under drained or undrained condition on sandstones were conducted. Moreover, complex cyclic loading and unloading tests were also carried out. Based on the experimental results, the following conclusions were obtained. For conventional triaxial tests, the elastic modulus, peak strength, crack initiation stress, and expansion stress increase with increased confining pressure. Pore pressure weakened the effect of the confining pressure under drained condition, which led to a decline in rock mechanical properties. It appeared that cohesion was more sensitive to pore pressure than to the internal friction angle. For complex loading and unloading cyclic tests, in deviatoric stress loading and unloading cycles, elastic modulus increased obviously in first loading stage and increased slowly in next stages. In confining pressure loading and unloading cycles, the Biot coefficient decreased first and then increased, which indicates that damage has a great impact on the Biot coefficient.

Funder

Scientific and Technological Innovation Projects for Overseas Scholars in Nanjing

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3