Development of New Robust Optimal Score Function for the Weibull Distributed Error Term in Multilevel Models

Author:

Saleem Sehar1ORCID,Sherwani Rehan Ahmad Khan1ORCID,Amin Muhammad2ORCID,Khalid Maryam3ORCID,Ali Nouman4ORCID

Affiliation:

1. College of Statistical and Actuarial Sciences, University of the Punjab, Lahore 5400, Pakistan

2. Department of Statistics, University of Sargodha, Sargodha, Pakistan

3. Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

4. Department of Software Engineering, Mirpur University of Science & Technology (MUST), Mirpur-10250, AJK, Pakistan

Abstract

A popular robust estimation technique for linear models is the rank-based method as an alternative to the ordinary least square (OLS) and restricted maximum likelihood (REML) in the presence of extreme observations. This method is applied in machine reliability analysis and quantum engineering, especially in artificial intelligence and optimization problems where outliers are commonly observed. This technique is also extended for the multilevel model, where the shape of error distribution contributes a significant role in more efficient estimation. In this study, we proposed the Weibull score function for the Weibull distributed error terms in the multilevel model. The efficiency of the proposed score function is compared with the existing Wilcoxon score function and the traditional method REML via Monte Carlo simulations after adding simulated extreme observations. For small values of shape parameter in Weibull distribution of error term showing the presence of outliers, the Weibull score function was found to be efficient as compared to the Wilcoxon and REML methods. However, for a large value of shape parameter, Wilcoxon score appeared either equally efficient than the Weibull score function. REML is observed least precise in all situations. These findings are verified through a real application on test scores data, with a small value of shape parameter, and the Weibull score function turned out the most efficient.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3