Affiliation:
1. School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
Abstract
The key nodes play important roles in the processes of information propagation and opinion evolution in social networks. Previous work rarely considered multiple relationships and features into key node discovery algorithms at the same time. Based on the relational networks including the forwarding network, replying network, and mentioning network in a social network, this paper first proposes an algorithm of the overlapping user relational network to extract different relational networks with same nodes. Integrated with these relational networks, a multirelationship network is established. Subsequently, a key node discovery (KND) algorithm is presented on the basis of the shortest path, degree centrality, and random walk features in the multirelationship network. The advantages of the proposed KND algorithm are proved by the SIR propagation model and the normalized discounted cumulative gain on the multirelationship networks and single-relation networks. The experiment’s results show that the proposed KND method for finding the key nodes is superior to other baseline methods on different networks.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献